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Various models have been proposed for the regulation of the primary immune response. Most of these
models focus on the ability of the immune system to control a multiplying pathogen, and take into
account the cross-regulations between different immune components. In the present study, we integrate
the immune system in the general physiology of the host and consider the interaction between the
immune and neuroendocrine systems. In addition to pathogen growth and toxicity, our four-variable
model takes into account the toxic consequences for the organism of the immune response itself, as
well as a neuro-hormonal retro-control of this immune response.

Formally, the dynamics of the model is first explored on the basis of a discrete caricature, with special
emphasis on the role of the constitutive feedback loops for determining the essential dynamical behavior
of the system. This logical analysis is then completed by a classical continuous approach using
differential equations.

From a biological point of view, our model accounts for four stable regimes which can be described
as ‘‘pathogen elimination/organism healthy’’, ‘‘pathogen elimination/organism death’’, ‘‘pathogen
growth/organism death’’ and ‘‘chronic infection’’. The size of the basins of attraction of these different
regimes varies as a function of some crucial parameters. Our model allows moreover to interpret the
interplay between pathogen immunogenicity and neuro-hormonal feedback, the effects of stress on
immunity and the toxic shock syndrome, in terms of transitions among the steady states.
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1. Introduction

Several models have been proposed for the regulation
of the specific (Fishman & Perelson, 1993) and innate
(Antia & Koella, 1994) immune response. These
models focus on the ability of the immune system to
respond to a replicating pathogen and failure to
control pathogen growth is interpreted as leading to
the death of the host (De Boer & Hogeweg, 1986;
Schweitzer & Anderson, 1991; McLean & Nowak,
1992; Behn et al., 1993; Brass et al., 1994; Fishman
& Perelson, 1994; De Boer & Perelson, 1995). In the
context of these studies, negative feedbacks on the

immune system account for the termination of the
immune response and for self-tolerance. Here, we
present a model which is centered on the coupling
between the immune, nervous and endocrine systems.
This model takes into account the damages inflicted
by the pathogen to the organism as well as the toxicity
of the immune response itself. It is based on the
following immunological observations, summarized
in Fig. 1.

(1) In numerous diseases, harmful or lethal effects
for the organism are mostly due to the immune
response rather than directly to pathogen toxicity.
For example, evidence is accumulating that the
pathology observed in cerebral malaria is not directly
caused by Plasmodium products but by excessive
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F. 1. Schematic representation of the neuro-endocrine control of the immune response. Solid arrows indicate stimulatory interactions
and dashed arrows correspond to inhibitory interactions.

concentrations of normal components of the immune
response, mainly cytokines such as interferon-g
(IFN-g) and tumour necrosis factor a (TNF-a)
(Karunaweera et al., 1992; de-Kossodo & Grau,
1993). Similarly, it is widely believed that hepatical
damage associated with hepatitis-A (Fleicher et al.,
1990) and -B (Ando et al., 1993) virus infections are
induced by an immunopathological reaction of
sensitized cytotoxic T cells against infected he-
pathocytes. Overwhelming bacterial infections are
accompanied by a Systemic Inflammatory Response
Syndrome (SIRS) and a Multiple Organ Dysfunction
Syndrome (MODS) leading to death. Many studies
have shown that these symptoms are caused by the
TNF-a cytokine, produced in response to endotoxins
(LPS) and superantigens (Miethke et al., 1992)
released by the bacteria. Thus, pathogens weakly
toxic by themselves may trigger the release of host
toxic products. Let us stress that low concentrations
of these cytokines are, in most cases, not only
harmless but necessary for normal biological func-
tions. They become deleterious when over- or
chronically produced. To account both for the
injuries caused by the pathogen to the host and the
pathological consequences of immune responses, we

consider explicitely the health state of the organism
in our modeling (see also Marchuk et al., 1991;
Bocharov & Romanyukha, 1994).

(2) The neuroendocrine system has well-demon-
strated effects on immune functions. The interplay
between these two physiological systems is most
commonly associated with the pronounced effects of
stress on immunity. The hypothalamo-pituitary-
adrenocortical (HPA) axis is a key player in stress
responses and its activation represents a major
adaptive response to stressful circumstances such as
infections, psychological disturbances, trauma-in-
duced injuries and surgical stress. The pro-inflamma-
tory interleukin-1 (IL-1), produced by many
activated immune cells, keratinocytes and endo-
thelial cells (for a review see Titus et al., 1991), has
been identified as an important activator of the HPA
response in vivo (Sapolsky et al., 1987). This
cytokine stimulates the release of Corticotropin-Re-
leasing Factor (CRF) by the hypothalamus, leading
to the production of AdrenoCorticoTropic Hormone
(ACTH) by the pituitary. ACTH in turn induces the
release of glucocorticoids by the adrenal glands. It
has been shown that glucocorticoids may act as an
immunosuppressive and anti-inflammatory agent to
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lower life threatening reactions of the immune
system (Kunicka et al., 1993; Gonzalo et al., 1993;
Brown et al., 1993; Dobbs et al., 1993). These data
suggest that the brain is able to monitor the
progress of immune responses. As a consequence of
its pivotal role in the immune-neuroendocrine
interactions the HPA axis is a main component of
our approach.

The complex graph presented in Fig. 1 has been
simplified into a four-element model. Each of these
elements represents, in a global way, a family of
actors of the system: the first element is the pathogen
or antigen level; the second element represents the
size of the immune response, e.g. the numbers of
activated immune effectors and cytokine and im-
munoglobulin concentrations; the third element
characterizes the health state or viability of the
organism and reflects the degree of damages of
target organs and vital functions; finally, the fourth
element describes the neuroendocrine HPA com-
ponent and corresponds, in particular, to the
concentration of circulating glucocorticoids. The
graph of interactions corresponding to our model is
presented in Fig. 2(a).

The paper is organized as follows. In the next
section, we present our four-variable differential
model and discuss its main components. In the
third section, we introduce a logical approach and
describe the logical caricature of our differential
model. In the fourth section, the main results of our
model analysis are presented and discussed, both
from a dynamical and biological point of view. The
last section is devoted to concluding remarks and
perspectives.

2. A Four-Variable Differential Model

The basic interactions of our model [Fig. 2(a)] are:

(1) the proliferating pathogen stimulates the
immune response and negatively affects the viability
of the organism;

(2) the immune response neutralizes the pathogen
and is harmful for the organism. It also activates the
HPA axis;

(3) the HPA axis, in turn, downregulates the
immune response.

(4) the organism ensures its own maintenance and
is necessary for the occurrence of an immune
response. Formally, these interactions are described
by the following set of dimensionless differential
equations:

dP/dt=P{[kpP/(1+P)]− [1+ kiR]} (1)

dR/dt= krFA1FA3FI4 − drR (2)

dO/dt= koFA3 −O[do + aP+ bR] (3)

dH/dt= khFA2 − dhH (4)

in which P, R, O, and H represent, respectively, the
concentration of pathogen (kp q 0) or nonproliferat-
ing antigen (kp =0), the level of immune response, the
‘‘health’’ of the organism and the global level of
hormonal control.

The detailed mechanisms of antigen presentation,
cytokine regulation and organism maintenance are
not described. These maintenance, stimulatory or
inhibitory processes are represented, globally, by the
increasing sigmoids FA1 =P2/(s2 +P2), FA2 =R2/
(1+R2), FA3 =O2/(1+O2), and by the decreasing
sigmoid FI4 =1/(1+H2). These nonlinear functions
express the fact that those interactions which have a

F. 2. (a) Graph and (b) matrix of interactions for our four variable model, P, R, O and H represent, respectively, the level of the
pathogen, the size of the immune response, the state of the organism and the level of the neuroendocrine feedback. In the matrix, the
signs and the numbers correspond to the signs and the thresholds of the different interactions; for example, −2 in row 3/column 2 means
that R exerts a negative effect on O above its second threshold. The feedback loops of the system are indicated by circles (one-element
loops) and lines. We use a four-valued logical variable for the pathogen (P), a three-valued logical variable for the immune response (R)
and a one-valued variable for the organism state (O) and the HPA hormonal axis (H).
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regulatory character are, most often in biology,
doubly nonlinear: there is a ‘‘threshold’’ concen-
tration below which the regulator is inefficient and a
boundary value of its effect. On the other hand, the
pathogen is removed by the immune system at a rate
proportional to the size of the immune response.
Similarly, destruction of the target organ cells and
vital functions of the organism occurs at a rate
proportional to the pathogen load or level of immune
response. In each of the four equations, a linear term
accounts moreover for the spontaneous and non-
specific decay of the corresponding variable.

In eqns (1–4) each concentration variable has
been scaled by its threshold value. The pathogen
concentration has been scaled by its lowest,
proliferation, threshold, and time by the pathogen
death rate dp (1/dp : pathogen life expectancy). The
parameters in these equations are thus composite
parameters given explicitely in appendix C.

In eqn (1), the proliferation term, P[kpP/(1+P)],
contains a lower threshold and accounts for a density
dependent proliferation rate; this means that, at
extremely low pathogen densities, the pathogen
can be considered as extinct. The second term,
P[1+ kiR], describes non-specific and immune
dependent pathogen removal. It should be stressed
that the trivial state, corresponding to pathogen
elimination, is always a stable steady state.

In eqn (2), the first term, krFA1FA3FI4, combines
three contributions. FA1 and FA3 account for the
usual conditions to evoke an immune response, i.e.
the presence of antigen at a sufficient concentration
(FA1 1 1) and an healthy organism (FA3 1 1). The
third (decreasing) sigmoid, FI4, represents the
inhibitory effect of the HPA axis on the immune
response. Note that as long as the organism remains
viable immunocompetence is here only slightly
affected by the state of the organism. Specific
immunosuppression associated with a particular type
of infection is not considered at this stage.

In eqn (3), koFA3 accounts for the fact that an
organism in very ‘‘bad shape’’, will decline and die
(lower branch of the sigmoid), whereas an organism
in ‘‘good shape’’ promotes its own maintenance
(upper branch of the sigmoid). Pronounced destruc-
tion of target and vital organs such as for instance the
airways, liver or heart, corresponds to greatly
decreased values of O and are lethal (O=0).

In eqn (4), the activatory effect of the immune
system on the HPA axis is represented by an
increasing sigmoid, FA2, to take into account the
existence of an activation threshold as found by
Sternzel-Poore et al. (1993).

A series of parameters qualitatively describe the
pathogen and host characteristics:

—kp gives an estimation of the pathogen prolifer-
ation rate;

—kr globally quantifies the immunogenic properties
of the pathogen and the corresponding immune
system reactivity related, for example, to host genetic
background and nutritional status, environmental
factors or presence of concomitant infections;

—ki represents the sensitivity of the pathogen to the
immune response;

—a gives a measure of the level of toxicity of the
pathogen for the organism, i.e. the damages inflicted
by the pathogen itself.

—b represents the toxicity, for the organism, of the
immune response that is induced by the pathogen;
note that, depending on the site of pathogen
proliferation, the same immune response may be
more or less injurious.

—kh characterizes the responsiveness of the
neuroendocrine system to inflammatory immune
mediators, depending on several factors such as the
pathway of interaction or antecedents of the
organism; this parameter may also reflect the presence
of glucocorticoid antagonists in the circulation.

In addition to the classical aspects of an immune
response, i.e. control and elimination of the pathogen,
chronicity and latent infection, killing of the organism
by the pathogen when the immune response does not
succeed in controlling pathogen growth, this set of
parameters allows to consider different pathogen
profiles and special immune situations, such as toxic
shock and stress effects.

Clearly, our differential system comprises multiple
intertwined feedback loops. In order to localise all its
steady states and to get a qualitative insight in its
main dynamical features, we first analyse a ‘‘logical
caricature’’ of the system.

3. Logical Approach

3.1.  

Thomas and collaborators have recently developed
logical tools for the analysis of complex regulatory
networks (Thomas & D’Ari, 1990; Thomas, 1991).
Their method focuses on the dynamical role of
regulatory circuits called feedback loops. In short, a
feedback loop is any closed series of interactions
where each element appears only once (‘‘oriented
circuit’’ in the language of Graph Theory). All
feedback loops can be classified into positive or
negative, according to whether they have an even
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or an odd number of negative interactions. These
two types of loops have strikingly different dynam-
ical properties: positive loops can generate multi-
stationarity, whereas negative loops can generate
homeostasis.

Formally, the elements of a network and the
interactions between them are represented by discrete
variables, functions, and parameters. In the simplest
cases, these take only two values (zero or one).
However, when modeling complex regulatory systems
where some variables have several distinct actions,
one often needs to account for more than two
qualitatively different levels for some of the variables.
Accordingly, when necessary, one uses logical
variables endowed with more than two values.
Moreover, one also considers explicitly the threshold
values separating the regular logical values. For a
multi-level logical variable (and its corresponding
function and parameters), one has thus a limited set
of possible values of the type {0, s(1), 1, s(2), 2, . . . }
where s(1) represents the threshold separating values
zero and one, etc.

This formalism leads to a limited number of
combinations of the variable values, each correspond-
ing to a different state of the system. Among these
combinations, some involve only regular values and
are thus called ‘‘regular states’’, whereas others
involve one or more threshold values and are called
‘‘singular states’’.

Recently, Thomas and collaborators have pro-
posed that each feedback loop can be characterized
by a singular logical state located on the thresholds
at which the variables act in the loop (Snoussi &
Thomas, 1993; Thomas et al., 1995). For proper
parameter values, this characteristic state is steady
in the subspace of the variables of the loop and
the corresponding loop is functional. ‘‘Functional’’
means that if the loop is positive, it actually produces
multistationarity (and the characteristic state is
located on the separatrix between the two attractors
of the system); if the loop is negative, it generates
homeostasis, i.e., the variables of the loop tend to
middle range values, with or without oscillations. This
notion of loop-characteristic state can be generalized
to include states characteristic of sets of loops
(Thomas et al., 1995).

In the context of this ‘‘generalized logical
description’’, one can easily compute the parameter
constraints to render a given feedback loop
functional. Moreover, comparing different sets of
parameter constraints, one can check if any group
of loops may be functional simultaneously. The
analysis of the behavior of a network thus boils down
to dissociating the network into its constituent

feedback loops and checking their dynamical role,
yet keeping full control on the way in which the loops
are interconnected.

The correspondence between logical and differen-
tial parameter constraints becomes perfect as one uses
steeper and steeper Hill functions to represent the
interactions between the variables. More specifically,
in the case of a simple, functional, positive loop, one
finds an unstable steady state located at or near the
threshold values (a saddle point for a two variable
system) and two attractors which are stable nodes. In
the case of a negative loop, one also finds a steady
state located at or near the threshold values, but it
may be stable or unstable (stable fixed point for
1-variable, stable focus for 2-variable, and a stable or
unstable steady state with a periodic component for
3-variable systems). Thus, in the differential descrip-
tion as in the logical description, we can associate a
characteristic state with each simple feedback loop,
the steadiness of this characteristic state expressing
the functionality of the corresponding loop.

Dealing with a complex network, we show in this
paper that what can be learned about the dynamical
role of individual feedback loops in the logical context
can be extended to homologous differential models.

3.2.      -

 

From the graph of interactions [Fig. 2(a)], we
derive the ‘‘matrix of interactions’’ shown in Fig. 2(b).
The +/− signs and numbers denote the stimulatory
or inhibitory nature of the interactions and their
corresponding threshold, respectively; for example,
−2 in row 3/column 2 means that R exerts a negative
effect on O above its second threshold. Note that we
use a four-valued logical variable for the pathogen
(P), a three-valued logical variable for the immune
response (R) and two-valued variables for the
organism (O) and the HPA hormonal axis (H). The
feedback loops of the system are indicated by circles
(one-element loops) and lines. One can easily localise
six feedback loops, including three positive and three
negative loops, which may be labelled P, O, POR and
PR, RO, RH, respectively.

Using a computer program (Thieffry et al., 1993),
the parameter constraints for which each of the six
feedback loops is functional can easily be determined.
In fact, one can find constraints such that all six
feedback loops are functional simultaneously, at least
in their respective subspace (see Appendix A).

On the basis of biological considerations, we have
chosen a specific set of values for the logical
parameters which is consistent with the constraints
imposing that all six feedback loops are functional,
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T 1
Loop functionality, logical and differential steady states [P, R, O, H]

Functionality Logical steady
Loops Signs domains states Differential steady states Stability

P + s(1)[0][01][01] [s(1)000] [0.17, 0, 0, 0] Unstable
[s(1)010] [0.19, 2.94 10−3, 2.34, 1.73 10−4] Unstable

O + [012][01]s(1)[01] [00s(1)0] [0, 0, 0.42, 0] Unstable
PR − s(2)s(1)[1][0] [s(2)s(1)10] [1.02, 7.44 10−2, 1.63, 0.11] Stable
RO − [2]s(2)s(1)[0] − − −
RH − [23]s(2)[1]s(1) − − −
POR + s(3)s(1)s(1)[0] [s(3)s(1)s(1)0] − −
P*O +*+ [s(1)0s(1)0] [0.17, 4.34 10−4, 0.42, 3.77 10−6] Unstable
PR*O −*+ [s(2)s(1)s(1)0] [1.73, 0.10, 0.77, 0.20] Unstable

[0000] [0, 0, 0, 0] Stable
[3000] unbound exponential growth of the pathogen
[0010] [0, 0, 2.38, 0] Stable

The first two columns contain the different feedback loops of the system and their corresponding sign. For each of these
loops, the third column gives the domains of functionality for the parameter values chosen (see Table A1). The fourth
column indicates the corresponding singular steady states, plus the three regular steady states of the system (three last rows).
Finally, the last two columns give the continuous counterparts of the logical steady states and their stability, for the
parameter values corresponding to Appendix C. Note that P*O and PR*O represent combinations of disjoint loops (i.e.
loops which do not share any element) which generate a common characteristic state.

at least in a region of the variable space (see
third column of Table 1 and Appendix A). In fact,
these values amount to impose ‘‘AND’’ constraints
wherever several interactions are exerted on a same
element.

For parameter values consistent with these
constraints, the system has ten steady states, three
‘‘regular’’ stable states, [0000] (zero state), [0010]
(pathogen dead, organism alive) and [3000] (pathogen
growing, organism dead), and seven ‘‘singular’’
steady states, i.e. states located on one or more
thresholds, which are characteristic of loops P, O,
PR, POR and of the union of loops P*O and PR*O.
The logical values of these states are given in the
fourth column of Table 1. Among these singular
steady states only state [s(2)s(1)10], the chronic infection
state, characteristic of the negative loop PR, can be
stable. All the other singular states are characteristic
of (at least) one positive loop and are thus located on
a separatrix and unstable.

4. Results and Discussion

4.1.   

Let us now give a general view of the attractors and
main dynamical properties of the differential model.
The logical constraints which ensure the functionality
of all six feedback loops have been used to derive
reference values for the parameters of the differential
equations.

Using the qualitative information derived from the
logical analysis (number, nature and approximate
location of the steady states), we have determined

the steady states in the differential description. We
have first located the stable states by numerical
integration of the differential eqns (1–4). This gives
the continuous counterpart of the logical values at
these steady states. These continuous values have
been used to locate the unstable steady states by
iteration. In addition, the differential steady states
have been checked by the graphical and numerical
resolution of a polynomial in R constructed from
eqns (1–4), as shown in Appendix B.

The steady states corresponding to both the logical
caricature and the differential model are given in
Table 1. As seen in this table, eight of the ten steady
states which are predicted by the logical analysis are
also found in the differential system. Each of these
steady states has a location, a nature (focus-saddle
point, node, . . .) and a stability consistent with the
logical predictions. More specifically, only the
differential steady states corresponding to regular
logical steady states, plus the steady state character-
istic of the negative loop PR, [s(2)s(1)10], are stable. As
expected, this latter is periodically attractive. All the
other differential steady states, corresponding to
characteristic states of positive feedback loops are
unstable.

The absence of differential steady states corre-
sponding to the logical steady states [3000] and
[s(3)s(1)s(1)0] can be explained without difficulty
considering that the differential system involves an
exponential (unbound) interaction which is rep-
resented by a (bound) threshold function in the
logical caricature. Indeed, there is no upper bound to
pathogen growth in the differential eqn (1). Thus, to
the logical state [3000] corresponds simply an
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T 2
Biological interpretation of the attractors of the system

Differential attractors Logical counterparts
[P, R, O, H] Immunological interpretation [P, R, O, H]

[0, 0, 0, 0] pathogen elimination and organism death [0, 0, 0, 0]
[0, 0, 2.38, 0] healthy, uninfected organism [0, 0, 1, 0]
[a, 0, 0, 0] unbound exponential growth of the pathogen [3, 0, 0, 0]
[1.02, 7.44 10−2, 1.63, 0.11] pathogen persistence [s(2), s(1), 1, 0]

The parameter values for the differential eqns (1–4) are here as defined in Appendix C. The parameter values chosen
for the logical caricature are given in Table A1.

(a)

(b)

F. 3. (a) Bifurcation diagrams giving the steady state branches for the pathogen concentration, P, and the state of the
organism, O, as a function of the pathogen growth rate kp . Other parameter values are as in Appendix C. Solid lines
correspond to stable branches, dashed lines to unstable branches. (b) Time evolution for different values of the pathogen
growth rate kp , and other parameter values as listed in Appendix C. The initial state corresponds to a healthy organism
infected with a pathogen dose P=10. kp =3: pathogen elimination is accompanied by full recovery of the organism. kp =7:
pathogen growth is controlled but a state of chronic infection settles. kp =10: the immune response is too weak to control
the growth of the pathogen; a long lasting immune response together with damages inflicted by the pathogen lead to
organism death.
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exponential growth of the pathogen in the differential
description. As regards the second state, [s(3)s(1)s(1)0],
characteristic of the positive loop POR, we know that
in the logical formalism s(3) separates the lower values
of P (0–2) from its top value (3). This top value is
pushed towards infinity in the differential system and
it is thus not surprising to loose the threshold value
s(3) when we proceed from the logical to the
differential description.

The physiological meaning of the four attractor
states of the system is summarized in Table 2.

4.2.     



In Fig. 3(a), we present the bifurcation graphs
corresponding to the pathogen level or state of the
organism vs. pathogen growth rate (kp ). Depending on
the value of kp , the system may have from three up to
eight steady states, with two to three stable states. Note
that some bifurcation branches are degenerate and
correspond to different steady states in the full variable

space, as illustrated in Table 1 for kp =7. A series of
typical time plots for different values of kp is given in
Fig. 3(b) which illustrates three of the four possible
regimes of the system, namely ‘‘pathogen death/organ-
ism recovery’’ [0010], ‘‘chronic state’’ [s(2)s(1)10] and
‘‘pathogen growth/organism death’’ [3000].

The system contains several intertwined feedback
loops and it is not straightforward to predict the effect
of parameter changes in the differential system.
However, this can be done very easily for the logical
caricature. A systematic logical analysis of the
constraints governing the functionality of the
different loops of the system shows that most of
the parameters are involved in the functionality of
more than one loop (see Appendix A). To study the
role of individual loops, we have looked for
modifications of the logical parameters such that only
one loop at a time looses its functionality. Two logical
parameters have been selected. One corresponds to ki ,
the strength of inhibition of the pathogen by the
immune response, which controls the functionality

(a)

(b)

F. 4. (a) Bifurcation diagrams for the steady state concentrations of the pathogen as a function of the elimination rate of the pathogen
by the immune response, ki , and of the strength of activation of the neuroendocrine (HPA) axis, kh . The other parameter values are given
in Appendix C. Solid lines correspond to stable branches, dashed lines to unstable branches. In both cases there exists a region of
multistationarity which includes a stable steady state corresponding to chronic infection. (b) Time evolution for different values of kh , the
strength of activation of the HPA axis. The initial state corresponds to a healthy organism infected with a pathogen dose P=10. Depending
on the strength of the negative feedback of the HPA axis on the immune response, one observes the establishment of the chronic infection
state (kh =300) or the rapid elimination of the pathogen and full recovery of the organism (kh =10). The other parameter values are as
in Appendix C.
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of the one-variable positive loop P. The other
corresponds to kh , the strength of activation of the
HPA axis by the immune response, which controls the
functionality of the two-element negative loop RH.

Even though our differential model is not exactly
homologous with its logical caricature, we expect that
corresponding parameter modifications will produce
qualitatively similar changes in the dynamics of both
models. Thus, we predict that modifying ki will affect
the multistationarity properties of the systems,
whereas modifying kh will influence its homeostatic
properties.

In Fig. 4, the bifurcation graphs corresponding
to these two parameters are shown. One sees, in
Fig. 4(a), that there is a limited range of ki values
allowing for multistationarity. At low ki this range
includes the chronic infection attractor [s(2)s(1)10].
On the other hand, there is a large range of kh

values (from 0 to ca. 1500) for which there are no
changes in the number and stability of the steady
states. Shown in Fig. 4(b) are two typical time plots
obtained for medium and low values of kh . Starting

with identical initial conditions, the system reaches
the chronic attractor in the first case, whereas in the
second case one observes full recovery of the
organism. Thus, as expected from the logical analysis,
the basin of attraction of the homeostatic state
(chronic attractor) is considerably reduced as kh

decreases. It should be noted that for very high kh the
chronic attractor disappears. Considering the differ-
ential equations, one can see that high kh values will
lead to high H and low FI4. Since FI4 enters a product
of sigmoids in eqn (2), kh affects indirectly the level
of R, in the differential description, and tends to
uncouple the equation for the pathogen.

The analysis of other parameter changes is more
subtle. Indeed, the logical analysis predicts that all
other parameters affect at least one positive and one
negative loop (see Appendix A). Thus, changing any
of these parameters should affect both the homeo-
static and multistationarity properties of the system.
Bifurcation graphs and typical time plots correspond-
ing to some of these parameters are discussed in the
next section.

F. 5. Influence of the pathogen dose and the state of the organism on the outcome of infections. (a) Regime states and possible
transitions upon pathogen encounter. (b) Influence of the addition or removal of pathogen on the evolution of a chronic infection. The
system is initially in the chronic infection state P=1.18, R=0.09, O=1.46, H=0.17. At time t=0, pathogen is added or removed and
the system is then allowed to evolve freely. The parameters are as in Appendix C, except for kp =8 and ki =36. It can be seen that, within
a given range of pathogen doses, secondary infections now lead to rapid pathogen elimination and full recovery of the organism. (c)
Influence of the initial state of the organism (O) on the outcome of an infection, as a function of two different pathogen doses. At time
t=0, R=H=0. The parameter values are those of Appendix C.
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4.3.   



4.3.1. Influence of the size of the infecting pathogen
dose and the state of the organism on the outcome of
infections

Figure 5(a) summarizes the possible transitions
among the different regime states of our system.
Starting from an healthy organism (steady state
[0010]) infected by the pathogen (state 1010), the
system may evolve toward any one of the four
attractors described in the preceeding sections,
depending on the pathogen dose and parameter
conditions. On the other hand, the steady state
[s(2)s(1)10] corresponding to a chronic infection can be
destabilized by adding (secondary infection) or
removing (therapeutical treatment) the pathogen.
Figure 5(b) shows that starting from the chronic
state, secondary infections or neutralization of the
pathogen may lead the system to the states [3000],
[0010] or back to the chronic infection state [s(2)s(1)10].
It should be stressed that, within a given range
of pathogen doses, secondary infections may be
accompanied by pathogen elimination and full
recovery of the organism.

In our model, the outcome of an infection also
depends on the state of the organism (i.e. O level)
upon pathogen encounter. As illustrated in Fig. 5(c)
for a given set of parameters, an organism in good or
relatively good shape is able to eliminate the pathogen
or at least to master the pathogen growth, depending
on the strength of the infection and initial state of the
organism. On the contrary, an organism in bad shape
will be pushed towards death with an exponential
growth of the pathogen. This latter situation arises,
for instance, if a second encounter with a pathogen
occurs before the organism has significantly recovered
from a first strong infection during which the
pathogen has been eliminated.

Our model thus accounts for the fact that an
organism will be more or less resistant to infection
depending on its initial health condition and on the
strength of the infection. It also suggests that addition
of pathogen may cure persistent infections by
boosting the response, as has also been predicted in
some other models of immune regulation (Behn et al.,
1993; Segel & Jäger, 1994; Segel et al., 1994).

4.3.2. Immunogenicity, toxicity and neuro-hormonal
feedback

Classically, organism death following an infec-
tion is attributed to the failure of the immune sys-
tem to master the pathogen, and the pathogen itself
is considered as the main injury cause. In this

perspective, the problem of an adequate immune
response is boiled down to the production of the
strongest and the best fitted response to the infecting
pathogen. Many studies, however, have demonstrated
the importance of a neuro-endocrine control of the
efficiency of immune responses. It has been shown
that the activation of the HPA axis, followed by the
secretion of glucocorticoids, significantly lowers the
efficiency of cytotoxic-mediated immune responses,
thus affecting the development of anti-tumoral
(Visintainer et al., 1982) and anti-viral immunity
(Koff & Dunegan, 1986; Hermann et al., 1994). In
various cases of viral (Hermann et al., 1994; Dunn &
Vickers, 1994; Sundar et al., 1991) or bacterial
infections (Gonzalo et al., 1993), on the other hand,
one has observed that macrophage-dependent and
cytotoxic-mediated immune response induce gluco-
corticoid production by the neuroendocrine system.
These results suggest the existence of a negative
neuro-endocrine feedback on the immune response.
Surprisingly, in some cases, one has found that this
feedback has a positive effect on the survival of the
organism and the elimination of the pathogen. In
particular, one has observed in murine models that
glucocorticoid production increases the resistance in
cases of influenza virus infection (Hermann et al.,
1994) or bacterial toxic shock (Gonzalo et al., 1993).
The classical paradigm of the immune response which
states that the strongest response is also the most
efficient, does not account for the fact that this
negative neuroendocrine feedback can have either a
positive or a negative effect on pathogen elimination,
nor for its advantages for the organism.

The explicit consideration, in our model, of the
functional integrity of the organism (O), the HPA
neuro-hormonal axis (H, kh ), as well as the injuries
caused by the pathogen (a) and by the induced
immune response (b) allows us to explore a wide
range of host/pathogen dynamics.

In a first step, we have analysed the contributions
of parameters kp and ki which quantify the
proliferation rate of the pathogen and the sensitivity
of the pathogen to the immune response, respectively.
Starting from a healthy state, numerical simulations
with different values of these parameters, allow to
divide the parameter space into regions which lead
preferentially to one of the four attractors of the
system: the ‘‘zero state’’, ‘‘pathogen death/organism
alive’’, ‘‘pathogen growth/organism death’’ and
‘‘chronic infection’’ [Fig. 6(a)].

In a second step, for a given set of kp and ki values
allowing for chronic infection, we have explored the
role of parameters kr (pathogen immunogenicity) and
kh (activation of the HPA axis by the immune



ki

kp 0 8 16 24 32 40 48 56 64
0
2
4
6
8

10
12
14
16
18

0
0
S2
3

0
0
S1
0

0
1
1
0

0
0
0
0

1 2 3

kr

kh 0
101

4 5 6 7

3 101

102

3 102

103

3 103

104

10 E:

β = 0

α = 0.02

0
101

3 101

102

3 102

103

3 103

104

α = 0.2

1 2 3 4 5 6 7

10 E:

β = 0.8

1 2 3 4 5 6 7

10 E:

β = 8(b)(a)

     295

F. 6. Qualitative dynamics of eqns (1–4) upon pathogen encounter, starting from the initial conditions specified in Appendix C. The
matrices give the final state that is reached by the system for different combinations of values of chosen couples of parameters (when
parameter values are not specified, they are as in Appendix C). By comparing these different matrices, one can see how the parameters
modify the region of attraction of the different regime states.

response), for different values of parameters a and b

(the toxicities of the pathogen and of the immune
response). For each couple of values of these latter
parameters there is a range of kr and kh values which
gives rise to the chronic attractor, in good agreement
with the logical analysis which predicts that a and b

are involved in the functionality of the positive loop
O (see Appendix A). Moreover, one sees in Fig. 6(b),
that when a and b increase, the domains of attraction
of the different steady states are strongly modified in
the parameter space kr /kh , with a progressive
contraction of the ‘‘chronic infection’’ domain and
expansion of the ‘‘pathogen growth/organism death’’
domain. In addition, as b increases, the ‘‘zero state’’
domain extends, which means that the pathogen is
eliminated but the immune response itself causes
organism death.

The effect of kr , the pathogen immunogenicity, in
relation with the neuro-endocrine control of the
immune response is illustrated in Fig. 7 with some
typical simulations. Depending on kr , the issues of the
host/pathogen conflicts can be classified into two
main sets. In the first set (kr =104), at low kh , the
immune response is efficient enough to eliminate the
pathogen without significant injury to the organism.
Stronger neuro-endocrine feedback (i.e. increased kh )
results in a weakening of the efficiency of the immune
response together with an increase of organism
injuries by the pathogen which can lead to death. In
a second set, characterized by higher kr values
(kr =105), the immune response is also able to
eliminate the pathogen at low kh , but the induced
response destroys the organism as well. In this case,
higher kh values may lead to the preservation of the
organism. However, if the HPA axis damps the
immune response too strongly, the pathogen can no
longer be eliminated and the system settles in the
attractor ‘‘pathogen growth/organism death’’. Note

that for high pathogen immunogenicity the system
cannot sustain a stable chronic state as can be seen
in Fig. 8 on the comparative bifurcation graphs
for kr =104 and kr =105.

Our analysis thus suggests that the ‘‘optimal’’
immune response is not the response of maximum
amplitude, but rather the response which consist in
the best compromise between the elimination of the
pathogen and the damages inflicted to the organism
by direct or indirect destruction of tissues or organs
caused by immune mediators.

Experimental data demonstrate the existence of
a threshold for the activation of a neuro-endocrine
feedback by immune mediators. It has indeed been
shown that the HPA axis is induced by injections of
high—and not by low—doses of antigen (Stenzel-
Poore et al., 1993). Such a threshold can be explained
by the fact that the mediators of inflammatory
responses, such as IL-1, need to reach a systemic level
in order to trigger the synthesis of glucocorticoids.
Below this threshold, the response remains local and
harmless for the organism. Above this threshold, the
response perturbs the integrity of the organism and is
inhibited by the HPA axis. The notion of a response
threshold for the activation of the HPA axis has been
introduced in our model through the increasing
sigmoid FA2 in eqn (4). When the HPA axis is
switched on, the results in this section suggest an
additional distinction as a function of the immune
response level. Indeed, activation of the neuro-
endocrine feedback has positive consequences only
when the amplitude of the response, which is a
function of kr , exceeds a certain level. At intermediate
response levels, activation of the same negative
feedback is unfavourable for resolving the host/
pathogen conflicts. These results show that our
model encompasses and clarifies the paradox of the
neuro-endocrine feedback on the immune response.
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F. 7. Influence of pathogen immunogenicity and neuro-endocrine control of the immune response on the outcome of infections. The
initial state and parameter values are specified in Appendix C. Left panel (kr =104): increasing the strength of the neuroendocrine feedback
results in a weakening of the efficiency of the immune response and has a negative effect on pathogen elimination and organism health.
Right panel (kr =105): increasing the strength of the neuroendocrine feedback has a positive influence on organism preservation by
diminishing the toxic consequences of the immune response itself.

In the next two sections, we apply the preceeding
results in the study of stress-mediated immune
regulation and toxic shock syndrome.

4.3.3. Stress and immune response

Surgical or psychological stress-induced psy-

choneural stimulation, via the HPA axis, activates the
adrenal cortex to release glucocorticoids, which elicit
various alterations of glucocorticoid-sensitive cell-me-
diated immunological processes in man and animals.
Animals exposed to surgical or psychological stress
showed a substantial decrease in Natural Killer cell
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F. 8. Bifurcation graphs for different values of the pathogen immunogenicity, kr . The steady states characterizing the health of
the organism (O) are represented as a function of the strength of activation of the HPA axis, kh . Other parameter values are given in
Appendix C. Solid lines correspond to stable steady states, dashed lines to unstable ones. For high pathogen immunogenicity the system
cannot sustain a stable chronic infection state.

cytotoxicity against tumor in in vitro assay (Pollock
et al., 1987; Ben-Eliyahu et al., 1991) and multiple
animal models demonstrate that stress reduces tumor
rejection and decreases survival (Visintainer et al.,
1982). These findings support the hypothesis that
stress can facilitate the metastatic process via
suppression of the immune system. On the other
hand, activation of the HPA axis by restraint stress
or by the addition of glucocorticoid analogs increases
the susceptibility of macrophages from mice to the
in vivo growth of Micobacterium avium (Brown et al.,
1993). Recent observations provide evidence that
psychological stress can also influence the anti-viral
cellular immunity. For example, stress can induce an
increase of the frequency and severity of recurrent
herpes simplex (HSV) infections by the suppression of
macrophage-mediated lysis of HSV infected cells
(Koff et al., 1986). In contrast, restraint stress has
been associated with an enhanced probability of
survival, attributable to elevated levels of circulating
glucocorticoids, during influenza virus infection
(Hermann et al., 1994).

In our model, stress disturbances can be rep-
resented by the initial values of H. In Fig. 9, we have
explored the dependence of the immune response on
the initial value of H. Figure 9(a) summarizes the
results of a set of simulations for different values
of kr and kh . Depending on these initial values, the
issues of the host/pathogen conflicts are modified.
Figure 9(b) gives the trajectories in the phase plane
(O, P) starting from a healthy organism and differ-
ent pathogen doses, for two values of kr and initial
values of H. These diagrams show a drastic

modification of the basins of attractions as a function
kr . For kr =104, an initial value H=0 leads to
‘‘chronicity’’ or ‘‘pathogen death/organism recov-
ery’’, depending on the initial pathogen dose. For an
initial value H=10, the ‘‘chronic’’ attractor domi-
nates. For kr =105, the ‘‘chronic’’ state is no longer
a stable steady state. An initial value H=0 leads to
the ‘‘zero’’ attractor, whereas for an initial value
H=10, the immune response succeeds to eliminate
the pathogen and leads to full recovery of the
organism.

These variations of the initial value of H show
that an initial stress can, in our model, influence the
outcome of the host/pathogen conflict and that the
resulting effect also depends on the immunogenicity
of the pathogen. This leads us to suggest that in
infections with a pathogenesis mostly imputable to
the immune response, like the Dengue Shock
Syndrome, Trypanosome Cerebral Malaria or hepa-
titis A and B, one could reach a more favourable
issue if one activates the HPA axis, e.g. by stress
induction or by using glucocorticoid analogs.

4.3.4. Toxic shock syndrome

Superantigens (SAgs) and lipopolysaccharide
(LPS) constitute a new class of antigens that includes
bacterial and viral antigens. If classical antigens have
to be processed by antigen presenting cells, SAgs and
LPS can stimulate the immune system in their native
conformation. Bacterial SAgs and LPS are recognized
as a major factor in the pathogenesis of bacterial
septic shock induced by Gram-negative bacteria, a
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F. 9. Influence of stress on the issue of host/pathogen conflicts. (a) The three matrices correspond to different initial values of
the neuroendocrine component of the system, H. Each box indicates the final regime state for a combination of values of kr and kh .
(b) Representative trajectories in the plane (O, P) as a function of different initial values of H and of the pathogen dose, P. Two
values of the couple kr /kh have been selected: 104/102 and 2.105/102. Non-specified initial conditions and parameters values are given
in Appendix C.

disease with significant mortality in humans. This is
related to the property of SAgs to mediate rapid and
massive activation of the immune system leading to
systemic cytokine secretion. Pathologies related to
SAgs and LPS are thus mostly attributed to the
production of proinflammatory cytokines by the

immune response (Miethke et al., 1992; Zuckerman
et al., 1989).

In our model, these antigenic profiles can be
represented by kp =0 (SAgs or LPS do not
proliferate), ki=0 (the immune system does not
eliminate SAgs or LPS) and a=0 (they are not toxic
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F. 10. Effect of the neutralisation of the HPA axis on SAgs or LPS administration. Time evolution for different values of kh , the strength
of activation of the HPA axis. The initial state corresponds to a healthy organism infected with a non proliferating pathogen (initial dose
P=4). Depending on the strength of the negative feedback of the HPA axis on the immune response, one observes the death (kh =10)
or full recovery of the organism (kh =300). For these simulations kp = ki = a=0 and the other parameter values are as in Appendix C.

by themselves). For these parameter values, we have
tested the influence of the inhibition of the HPA axis
on SAgs or LPS administration. Figure 10 shows that
neutralisation of the HPA axis (kh =10) enhances the
lethal consequences of their administration. This
result is in good agreement with experimental data
showing that preliminary administration of glucocor-
ticoid-antagonists sensitizes the organism to toxic
shock (Gonzalo et al., 1993).

5. Conclusions and Perspectives

The logical tool has been helpful to provide a
qualitative picture of the behavior of our four-
variable model (location and nature of the steady
states, location of the separatrices, etc.), and has
helped us to determine the corresponding elements
in the differential context.

In the logical approach the relation between
feedback loops and steady states is clearly understood
(Thomas & D’Ari, 1990; Thomas et al., 1995).
Proceeding from the logical caricature to a differential
model, the interdependency of the different loops has
been increased and the relationship between loops
and steady states weakened. Nevertheless, in the case
of our four-variable system, we could still predict
specific dynamical changes (loss of multistationarity
or homeostasis) on the basis of the logical analysis.

From a biological point of view an essential aspect
of our approach is to consider the physiological
interaction between immunity and the neuroendo-
crine system, which results from a sharing of ligands
and receptors. To this end, in addition to classical
parameters such as pathogen growth, pathogen
immunogenicity, efficiency of the immune response
and damages inflicted by the pathogen to the
organism, we have introduced variables and par-

ameters representing the viability of the organism, the
toxicity of the immune response and its neuro-
hormonal control. First, our model accounts, in
terms of transitions among multiple attractors, for
a large spectrum of classical and less classical
immune responses. Second, it allows to redefine the
notion of ‘‘optimal’’ immune response, to clarify the
paradoxical effects of neuroendocrine inhibition of
the response, and to suggest ways to modify the
outcome of infections which usually lead to
immunotoxicity.

In particular, our analysis suggests that the
‘‘optimal’’ immune response is not the response of
maximum amplitude, but rather the response which
consists in the best compromise between the
elimination of the pathogen and the integrity of the
organism. On the basis of our results, we propose that
administration of glucocorticoid analogs or acti-
vation of the HPA axis by stress could advanta-
geously modify the outcome of infections which are
accompanied by immune toxicity.

In this study, we have considered the negative
feedback on the immune response of the HPA axis.
Several other negative feedbacks, such as the
production of prostaglandins, IL-4, IL-10, IL-13 or
TGF-b are well-documented and have also been
shown to inhibit macrophage-dependent and cyto-
toxic-mediated immune responses. Unlike the induc-
tion of glucocortoid synthesis, however, these
feedbacks are produced locally in response to a local
stress. The fact that the activation of the HPA axis
requires a systemic level of immune mediators and
that it can be triggered by an external stress endows
this feedback with a particular integration capacity.
On the basis of our results, we thus propose that the
HPA axis constitutes a regulator of the amplitude of
the immune response and of its potential toxicity.
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Our model also leads to interpret superantigen
(SAgs) and lippopolysaccharides (LPS)-induced im-
mune responses. Since their discovery, SAgs and LPS
constitute a source of immunological questioning.
The expression of these highly immunogenic mol-
ecules does not fit into the ‘‘classical’’ escaping
strategies of pathogens, which aim at a weakening of
their immunogenicity e.g. by antigenic variation,
production of immunosuppressive factors and func-
tional inactivation/deletion of regulatory or effector
cells, etc. However, the absence of sequence
homology between the different groups of bacterial
(Staphylococcus auréus, Mycoplasma arthritidis,
Clostridium perfringens) or viral (Mouse Mammary
Tumor Virus, Rabic Virus) SAgs suggest a coevolu-
tion leading to common functional properties and
some evolutive advantage for the pathogen. In fact,
it is now well established that, despite their high
activatory properties, bacterial SAgs do not induce
the differentiation of naive T helper cells into memory
cells. After activation by SAgs, T helper undergo a
phase of unresponsiveness called ‘‘anergy’’ (Migita &
Ochi, 1993). Some authors have suggested that this
immunosuppression could be the consequence of a
massive activation of T cells by SAgs which could be
followed by the production of immunosuppressive
factors and lead to T cell anergy via a negative
feedback. Induced by SAg injection and known as
strong immunosuppressors, glucocorticoids are con-
sidered as possible mediators of this feedback
(Gonzalo et al., 1993).

Similarly, several studies suggest that LPS affect
the ability of the immune system to respond to a
potential or ongoing immune challenge (Grbic et al.,
1991). The detailed mechanism of LPS immunosup-
pression is still unknown. However, LPS injection
induces glucocorticoid secretion (Zuckerman et al.,
1989) and it is described that LPS-induced stress
modulate antigen presenting cells (APC) trafficking
and distribution (Roake et al., 1995).

In conclusion, the non-specific immunosuppression
induced by SAgs, and possibly by LPS, could confer
an evolutive advantage to the bacteria which produce
these antigens and, according to our model predic-
tions, be crucial for the survival of the host. Indeed,
if this immunosuppression allows the pathogen to
escape the immune response, it also lowers the
damages inflicted to the organism by the same
immune response. Thus, we suggest that these
particular antigens could result from a host/pathogen
coevolution and constitute an escaping mechanism to
the immune response, thanks to the exploitation of
the coupling between immune and neuro-endocrine
systems.

Finally, it should be stressed that both our
differential model and its logical caricature, are
essentially a qualitative description of the biological
problem investigated. The choice of variables with a
wide physiological meaning and of the form of the
functions describing the interactions aims at overcom-
ing the lack of quantitative data and at drawing a
robust qualitative picture of the regulatory network
involved. In this context, our model analysis gives a
coherent global picture of the neuro-hormonal
regulation of the immune response. It leads to an
interpretation of several experimental observations as
well as to broad guidelines for experimentation, which
could be further specified according to particular
experimental models.

The induction of a specific immune response is
determined by the activation of T CD4 lymphocytes.
These CD4 T cells can be classified into TH1 and TH2
lines according to their cytokine release patterns and
their regulatory functions [for a review, see Fitch
et al. (1993)]. An important observation is that if
TH1 responses are protective, then TH2 responses
tend to be counter-protective and vice versa. Recent
data also show that the activation of the HPA axis
tends to decrease TH1 activity and to enhance TH2
activity [for a review see Rook et al. (1994)]. In the
present modeling we focus mainly on antiviral and
antibacterial immune responses which are essentially
of the TH1-type. A next step will be to include in the
model the differentiation of TH1 and TH2 cell
sub-classes, taking into account that TH2 regulatory
and effector cells are less toxic and less sensitive to
inhibitory effects of glucocorticoids. This should
allow to analyze the constraints imposed by toxicity
and immunogenicity on the choice of the class of
immune response. Furthermore, introduction of the
TH1/TH2 dichotomy should also lead to investigate
the impact of stress and neuroendocrine control on
TH1 or TH2 mediated autoimmune diseases and TH2
mediated allergies. Indeed, several studies suggest a
negative feedback of the HPA axis on TH1-type
autoimmune reactions (Schauenstein et al., 1987) and
a positive feedback on allergic (TH2) reactions
(McQueen et al., 1989).
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APPENDIX A

Logical Analysis

The salient features of the logical formalism
developed by R. Thomas and collaborators are:

—the use of logical variables (labelled xi ) and
functions (labelled Xi ) which can take two or more
integer values (0, 1, 2, etc.);

—the introduction of specific logical values
(labelled s(1), s(2), etc.) to represent threshold values;

—the introduction of logical parameters associated
to each interaction (labelled Ki.j ) or set of interactions
(labelled Ki.jk . . .) exerted on a same element; these
logical parameters take the values (0, 1, etc.)
according to the logical scale of the corresponding
variable;

—the consideration of asynchronous transitions for
the variable values.

From the matrix of interactions, one can construct
a state table of the system which gives, for each
combination of values of the logical variables (‘‘state
vector’’), the value of the corresponding logical
functions (‘‘image vector’’). This table (not shown
here) is then used both to localize the steady states of
the system and to check the functionality of the
different feedback loops. Here we summarize the
main results of the logical analysis of our model.
More details about the formalism can be found in
Thomas, 1991 and Thomas et al., 1995.

Upon inspection of the graph or matrix of
interactions (Fig. 2) one can localise six feedback
loops:

—three positive loops, labelled P, O and POR:
—three negative loops, labelled PR, PO and RH,

respectively.

Using a computer program, one can then determine
the parameter constraints for having each of these
feedback loops functional in a given region of the
variable space (see Thieffry et al., 1993). These sets of
parameter constraints are given in the Table A1. Note
that, in order for several loops to be functional
together, one just needs to fulfil the corresponding
sets of parameter constraints together.

In the last row of Table A1, we give the set of
constraints that has been chosen to guide our analysis
of the differential model. For these parameter values,
all six loops of the system are functional at least in
part of the variable space. Together, these loops
generate seven ‘‘singular’’ steady states (i.e. states
located on one or more thresholds): [s(1)000], [s(1)010],
[00s(1)0], [s(2)s(1)10], [s(3)s(1)s(1)0], [s(1)0s(1)0] and [s(2)s(1)s(1)0].

In addition to these ‘‘singular’’ steady states, the
sysem has also three ‘‘regular’’ steady states (i.e. states
with integer values): [0000], [0010] and [3000]. These
regular steady states are simply the states for which
the state vector and the image vector are identical in
the state table (not shown here).

As seen in Table A1, parameter K1.2 is involved in
the functionality of the positive loop P only.
Changing the value of this parameter therefore
only affects the multistationarity generated by this
positive loop. Similarly, parameter K4.2 is only
involved in the functionality of the negative loop
RH. Thus, changing the value of this parameter
only modifies the homeostatic property generated
by this negative loop. The effect of the variation of
the corresponding differential parameters, ki and
kh , respectively, is presented in Section 4.2. Table A1
also shows that all other logical parameters
are involved in the functionality of more than one
loop.

APPENDIX B

Steady State Solutions of the Differential System

(1–4)

The steady-state solutions of eqn (1) are:

P=0 (B.1)

P=
1+ kiR

kp − (1+ kiR)
(B.2)

The requirement of positive values for the pathogen
level P imposes restrictions on the parameter values.
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(P=0, B1)

The steady state solutions of eqns (2–4) corre-
sponding to P=0 are:

R=H=0

O=0 and O=
1
2 6ko

do
2X 0ko

do1
2

−47.
Provided ko /do q 2 there are thus three steady state
solutions for O of which the two outer are stable
steady states.

      

(P$ 0, B2)

(a) for O=0 and kp q 1, there is an additional
steady state in which:

R=H=0 and P=
1

kp −1
.

This steady state is unstable in the P direction.

(b) for O$ 0:
eqns (2) and (3) may be rewritten in the form:

O2

1+O2 = f(R) and
O2

1+O2 =O g(R)

where

f(R)=
dr (s2 +P2)(1+ H2)

krP2 R

and

g(R)=
(do + aP+ bR)

ko

with P given by (B2) and

H=
khR2

dh (1+R2)
.

The steady-state solution for O is then given by:

O=
f(R)
g(R)

(B.3)

where R satisfies the equation:

g2 = f(1− f ) (B.4)

Real positive values for O require that 0 Q fQ 1 and
0Q gR 1

2.
Equation (B.4) is a polynomial of the 16th degree

in R, which has to be solved numerically. However,
the number and approximate location of the steady
state values of R, as a function of the parameters of
the system, can also be determined graphically from
the intersections of g2 and f(1− f ). This leads to two
to four additional (non zero) steady state values of R,
and hence of the other variables of the system, as
illustrated in Fig. B1 for two different values of
parameter kh .

F. B1. Graphical analysis of the steady solutions. The intersections of g2 and f(1− f ) give the non-zero steady-state values of R.
The parameter values are as in Appendix C, except for s=10, kr =103. (a) kh =0 and (b) kh =5000.
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APPENDIX C

Parameter Values

The composite parameters in eqns (1–4) are given
by:

kp = k'p /dp , kr = k'r /dpsr , ko = k'o /dpso , kh = k'h /dpsh

ki = k'i sr /dp , s= sp2/sp1

dr = d'r /dp , do = d'o /dp , dh = d'h /dp

a= a'sp1/dp and b= b 'sr /dp

where the primes refer to the initial parameters. 1/dp

is the pathogen half-life time. sr , so and sh are,
respectively, the threshold of action of variables R, O
and H in their corresponding sigmoid (Hill) function.
sp1 denotes the threshold for exponential growth of the
pathogen and sp2 its threshold level for the activation
of the immune response, with sp1 Q sp2. Unless
otherwise specified, the numerical analysis and
simulations were performed with the parameter
values: s=100, dr =10, do =2.5, dh =15, kp =7,
kr =104, ko =7, kh =300, ki =34, a=0.02, b=8,
and the initial conditions corresponding to an healthy
organism (R=0, O=2.379, H=0) infected with the
pathogen dose P=10.




