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Memory T cells generated by infection or immunization persist

in the organism and mediate specific protection upon

rechallenge with microbial pathogens expressing the same

molecular structures. However, multiple lines of evidence

indicate that previously encountered or persisting pathogens

influence the immune response to unrelated pathogens. We

describe the acquisition of non-antigen specific memory

features by both innate and adaptive immune cells explaining

these phenomena. We also focus on the different mechanisms

(homeostatic or inflammatory cytokine-driven) that lead to

acquisition of memory phenotype and functions by

antigen-inexperienced T lymphocytes. We discuss the

implications of these new concepts for host defense,

auto-immunity and vaccination strategies.
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Introduction
Immunologists have historically divided the immune sys-

tem into innate and adaptive branches. Innate immune

cells express germline encoded receptors that bind molec-

ular patterns shared within a variety of microorganisms

(termed pathogen associated molecular patterns, PAMPs),

whereas adaptive immune cells express receptors pro-

duced by somatic recombination that can potentially

interact with all pathogen-associated molecular structures

(termed antigens). A critical component of the adaptive

immune system is its capacity to remember prior encoun-

ters with the same antigen, a property referred to as

immunological specific memory, which forms the basis

for the efficacy of vaccines. However, some phenomena

cannot be explained by this paradigm. Clinical evidence
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strongly suggests that certain live vaccines, in particular

Bacillus Calmette-Guérin (BCG) and Measles vaccines,

can reduce all-cause mortality, most probably through

protection against non-targeted pathogens in addition to

the targeted pathogen. In experimental animal models, it

is well established that immune memory responses to

previously encountered pathogens can sometimes alter

the immune response to and the course of infection of

an unrelated pathogen by a process known as heterologous

immunity (reviewed in [1–3]). The latter is relatively

common within closely related species of pathogenic

agents but can also be seen with unrelated agents. In this

review, we discuss recent advances allowing a better

understanding of these phenomena.

The components and properties of immune
memory
Trained immunity

Until less than a decade ago, there was a general assump-

tion that the B and T lymphocytes of the adaptive

immune system were the only components able to gen-

erate memory cells, and mount recall memory responses.

Several recent studies have challenged this dogma

(reviewed in [4]) suggesting that the innate immune

system also displays adaptive properties. Natural killer

(NK) cells can autonomously retain a memory of past

antigen encounters and mediate more robust secondary

responses [5]. Monocytes exposed in vivo to pathogens

can also mount protective recall responses to re-infection

[6], suggesting that even cells derived from the myeloid

lineage in mammals may possess features of adaptive

immunity. This phenomenon involves metabolic repro-

gramming, leading to epigenetic rewiring [7,8]. The term

‘trained immunity’ has been proposed for the persistent

enhanced state of the innate immune response following

exposure to certain infectious agents, which may result in

increased resistance to related or unrelated pathogens. As

expected, a part of the cross-protection induced by vac-

cines seems to be dependent on trained immunity

(reviewed in [9]). Other signals may increase regula-

tory/suppressor properties of innate immune cells in a

prolonged fashion. For example, in the course of Toxo-
plasma gondii infection, local production of IFN-g by bone

marrow resident NK cells induces regulatory functions in

monocyte precursors that persist after resolution of the

infection [10].

Development of antigen-inexperienced memory T cells

under homeostatic conditions

T cell populations are tremendously diverse in terms of

phenotype, function, developmental plasticity, distribu-

tion, longevity, and protective capacity. The conventional
www.sciencedirect.com
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or true memory cells are induced via TCR stimulation by

foreign antigen, in the context of productive costimula-

tory and cytokine cues. Several distinct populations of

unconventional or innate memory T cells develop in

the thymus and phenotypically resemble conventional

memory T cells but do not require antigen experience to

obtain this status. Some of them display a highly

restricted (oligoclonal) TCR repertoire and have limited

tissue distribution. Invariant NKT (iNKT) cells are

the prototype of cells belonging to this family. Others

include CD8aa intraepithelial lymphocytes and mucosal-

associated invariant T cells. In addition, CD8SP thymo-

cytes may also acquire memory-like phenotype during

their differentiation under the influence of IL-4, pro-

duced locally by NKT cells. Acquisition of memory traits

by antigen-inexperienced CD8 T cells also occurs in the

periphery under normal or lymphodepletion conditions.

Under normal laboratory conditions, the pool of these

‘virtual memory’ (VM) cells represents 10–25% of

unprimed CD8 T cells in C57BL/6 mice and this propor-

tion greatly increases upon ageing [11]. Development of

VM cells requires high expression of T-box transcription

factor Eomesodermin (Eomes) that controls CD122

expression, the transducing IL-15 receptor beta chain

[12]. Type I IFNs, produced under homeostatic condi-

tions or during infections, drives Eomes expression by

CD8 T cells and IL-15 trans presentation by myeloid

cells, thereby promoting the development and expansion

of memory-like CD8+ T cells [13�,14�]. Recently, Eome-

shi CD45RA+KIR+NKG2A+ ‘innate/memory-like’ CD8+

T cells were also identified in human adult and cord blood

samples [15,16]. As for their mouse counterpart, these

cells were shown to traffic to the liver and to accumulate

with age [14�]. CD4+ T cell repertoire analysis of highly

purified T cell populations from naive animals revealed

that the Ag-specific clones displayed effector and central

‘memory’ cell surface phenotypes even prior to having

encountered their cognate antigen [17�]. However, for

CD4+ T cells, the underlying mechanisms of virtual

memory formation are still unclear. Taken together, these

data indicate that T cells expressing differentiated mem-

ory phenotype can be ‘naı̈ve’ with respect to their history

of antigen recognition.

TCR cross-reactivity and bystander activation

Polyspecificity of TCR

The ‘polyspecificity’ (also termed polyreactivity, plastic-

ity or degeneracy) of T cell receptor (TCR) (functionally

the ability of a single receptor to specifically recognize

many different antigens) is now well documented

(reviewed in [18,19]). Thus, TCR cross-reactivity to

environmental antigens may lead to expansion of memory

T cells potentially able to recognize pathogens that have

never been encountered. Indeed, healthy adults display

abundant memory CD4+ T cells specific for viral antigens

to which they have never been exposed [20]. Theoretical

arguments suggest that TCRs probably recognize, on
www.sciencedirect.com 
average, at least 1 million individual peptides [21] and

experiments have shown that peptides do not necessarily

need to show high sequence homology to cross-react with

the same T cell [22]. A theoretical study suggests that

although cross-reactivity is a rare event for immunologi-

cally naive individuals, the probability of finding cross-

reactive memory T cells becomes very high following

successive infections [23].

Bystander (cytokine-driven) activation

T lymphocytes express pattern recognition receptors

(PRRs), such as Toll-like receptors (TLRs), that are able

to interact with PAMPs or stress-induced molecules and

induce or modulate their activation [24]. In addition,

several cytokines, including IL-15, IL-18, IL-12 and

type I IFNs, can activate memory CD8+ T cells in a

bystander manner in the absence cognate antigen [25].

Nevertheless, IL-12 and other proinflammatory cytokines

were shown to transduce signals through the TCR

signalosome in a manner that requires Fyn activity and

self-peptide–MHC interactions [26]. Recent evidence

suggests that innate-like/VM CD8 T cells may represent

an important early line of defense against chronic viral

infections [27] and that these cells provide a robust, non-

cognate-antigen bystander protection against bacterial

challenge [14�]. However, bystander activation may also

have deleterious consequences for the host. For example,

exposure to prolonged bystander inflammation was shown

to impair the effector to memory transition upon infec-

tious challenge [28]. In the context of active chronic HCV

infection, Alanio et al. recently showed that antigen-

specific inexperienced cells differentiate into memory

cells resulting in a highly reactive CD8+ T cell com-

partment [29]. Along this line, increased IL-15 levels in

HIV-infected patients were shown to drive bystander

activation of CD8 T cells, that is linked to increased

morbidity and mortality [30�].

Tissue education by infection

Infection can also durably remodel the architecture of

mucosal tissues (reviewed in [31,32]). This phenomenon

could favor or impair immune responses against unrelated

pathogens. For example, in the lung, successive infec-

tions modify epithelium adherence and change the

lymphatic network and the frequency of inducible bron-

chus-associated lymphoid tissue (iBALT) [33,34]. In

addition, particular memory T cells persisting at the site

of infection have been described. These cells, termed

resident memory T cells, do not circulate between sec-

ondary lymphoid organs and non-lymphoid tissues such

as effector memory T cells (reviewed in [35]) and can also

be induced via bystander activation [36]. Resident mem-

ory T cells can promote early activation of innate immune

mechanisms in response to infection [37]. In humans,

when stimulated with IL-15, skin resident CD49a+

memory T cells express effector molecules, such as

perforin and granzyme B [38]. Taken globally,
Current Opinion in Immunology 2017, 48:38–43
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remodeling of mucosal tissues and local persistence of

memory T cells constitute a form of ‘tissue memory’

partially independent of antigen specificity.

Practical implications and perspectives
The paradigm of the antigen specificity of immune mem-

ory has dominated the field of immunology for decades.

Considering the non-specific side of adaptive memory

could have several important theoretical and practical

consequences.

Immune memory viewed as scalable network

Recent studies support an ecological view of immune

memory. The immune characteristics of ‘clean’ laboratory

mice are very different from that of mice that have been

naturally exposed to pathogenic microbes [39��]. Infec-

tion of mice with multiple common pathogens modified

yellow fever vaccine-induced immune responses [40].

Simultaneous coinfection results in substantial variation

in the specific CD8 T cell response to each pathogen

leading to unpredictability in terms of protection [41].

Viewed as a whole, these data support the idea that a

significant part of immunity to infectious diseases is not

specific to the antigens expressed by pathogens and is

dependent on the past and present interactions of the host

immune system with its environment. It therefore sug-

gests that memory T cells do not form fixed and isolated

clusters of cells but rather an interactive and evolving

nonlinear network. Antigenic challenge due to the
Figure 1
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microbiota, chronic infection and encounter of a new

pathogenic agent can alter the reactivity of the immune

network by modifying the frequency of T cells and their

polarization (summarized in Figure 1). Trained immunity

suggests that the innate immune system can also partici-

pate in this network, memorize past experiences and

durably affect the polarization and reactivity of lympho-

cytes. From an evolutionary point of view, it would appear

that the selection of an immune system displaying the

potential to mediate cross-protective reactions is ineluc-

table to counter the selective pressure of rapidly adapting

pathogens displaying complex escape immune mecha-

nisms [42]. Antigenic variation is one of the most common

escape strategies of pathogens. The possibility of non-

antigen-specific activation of immune effectors can

potentially offer partial protection against new antigenic

variants of pathogens.

Singularization and unpredictability of the immune

response, two beneficial consequences of non-specific

immune memory

Systems level analysis has revealed a major impact of non-

heritable environmental factors on human immunological

parameters [43��]. Convergence in immune status occurs

during cohabitation, suggesting that multiple factors

including chronic viral infections and microbiota compo-

sition shape the immune system [44��]. The latter can

affect the responsiveness of the innate immune system

[45], induce a cross-reacting immune repertoire able to
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recognize pathogens (reviewed in [46]) and impact the

composition of peripheral memory T cells [47]. This

probably results from inflammatory signals and cross-

reactivity between the antigens recognized by memory

T cells and antigens derived from the members of the

microbiota. This singularization of the immune system

implies that invasion and immune escape mechanisms

developed by pathogens will not be successful in all cases,

as the specific targets and organization of the immune

response are somewhat unpredictable. In an heteroge-

neous population where each individuals display particu-

lar immune response to infection, the probability that a

pathogen is able to infect all individuals is reduced

as compared to an homogeneous population (discussed

in [48]).

Revisiting the theory of immune tolerance

Classical self-tolerance theories propose that self-specific

lymphocytes are eliminated during thymic development

and that the decision of the immune system to tolerate or

reject is based on the detection of a ‘simple’ qualitative

signal such as a microbial signature (stranger/pattern

recognition theory [49]), damage signatures (danger

theory [50]), or an abrupt discontinuity of the antigen

signal (discontinuity theory [51]). The link between

chronic infection and autoimmunity is well-established

[52,53] and until now, it has been mainly explained by

antigen mimicry and the presentation of self-antigen in

association with PAMPs. However, it is likely that both

polyspecificity of the TCR and bystander activation of

T cells are also frequently involved. For example, Pane

et al. [54] showed that rotavirus induces bystander activa-

tion of autoreactive T cells from NOD mice by triggering

TLR7 signaling and IFN-a production in plasmacytoid

dendritic cells. However, autoimmunity is fortunately not

a systematic consequence of chronic infection. But if

T cells can be activated independently of their antigenic

specificity, how is tolerance maintained? We have previ-

ously proposed [3] that immune tolerance could be the

result of an elaborate computation by the immune

network based on a very large set of parameters including

microbial and damage signatures, but also a great number

of other contextual parameters such as the location and

duration of antigenic signals, the individual immune

history and the general state of the host organism (bow

tie hypothesis). In other terms, the immune network

could acts as a ‘cognition system’, like the central nervous

system, and be capable of information processing, learn-

ing, memorization and adaptation. From this perspective,

tolerance results from the interpretation of multiple

signals in a general context. Of course, this does not mean

that all signals have the same value. The immune system

can focus on some signals, such as PAMPs or DAMPs, but

the decision process remains dependent on the general

context and requires information processing. This

suggests that a better understanding of tolerance can only

come from an holistic approach to processing information
www.sciencedirect.com 
networks within the immune system and the identifica-

tion of the genetic and environmental factors influencing

this process.

Rethinking vaccination strategies

Several live vaccines display important non antigen-

specific protective effects dependent on the innate or

adaptive immune system [55–57]. This suggest that live

vaccines could have important beneficial effects on popu-

lations even if their respective target diseases have been

eliminated. Consequently, it may be important to quan-

tify the nonspecific beneficial effects associated with each

live vaccine before restricting their use or replacing them

by subunit vaccines. This is particularly the case for

vaccines that can be administered early in life such as

oral polio vaccine or measles vaccine as they may lower

general mortality and morbidity in low-income setting. In

addition, in the context of vaccination campaigns, it might

be important to avoid uniformization of the immune

responses. As individual diversity constitutes a funda-

mental protection against epidemics, it could be of inter-

est to administer distinct vaccines targeting the same

pathogen within a given population.

Conclusions
From an historical perspective, representation of the

immune system as a complex network of interacting

components is not new. The ‘idiotypic network theory’,

proposed by Niels K. Jerne in 1974 [58], was based on the

postulate that specific lymphocyte receptors recognize

high-affinity binding sites on antigens but also on antigen

receptor expressed by other lymphocytes, leading to the

formation of a network of interacting immune cells. This

theory that included only the adaptive components of the

immune system, already predicted that homeostatic inter-

actions inside this network could shape lymphocyte

repertoire but also control immune responses against

pathogens and the self. The new advances presented

here underlie the importance of the interactions between

innate and adaptive immune components and the micro-

biota, leading us to predict the emergence of a 2.0 version

of immune network theory. This unified and dynamic

view of the immune system will undoubtedly explain

better many natural phenomena but will be harder to

analyze experimentally. One can hope that new systems-

based and computational approaches will allow to address

this challenge.
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