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The fitness gains resulting from development of the adaptive immune system (AIS) dur-
ing evolution are still the subject of hot debate. A large random repertoire of antigenic
receptors is costly to develop and could be the source of autoimmune reactions. And yet,
despite their drawbacks, AIS-like systems seem to have been independently acquired in
several phyla of metazoans with very different anatomies, longevities, and lifestyles. This
article is a speculative attempt to explore the selective pressures, which favored this strik-
ing convergent evolution. It is well known that the AIS enables an organism to produce a
specific immune response against all natural or artificial antigenic structures. However, it
is frequently neglected that this response is highly variable among individuals. In practice,
each individual possesses a “private” adaptive immune repertoire.This individualization of
immune defenses implies that invasion and escape immune mechanisms developed by
pathogens will certainly not always be successful as the specific targets and organization
of the immune response are somewhat unpredictable. In a population, where individuals
display heterogeneous immune responses to infection, the probability that a pathogen is
able to infect all individuals could be reduced compared to a homogeneous population.
This suggests that the individual diversity of the immune repertoire is not a by-product of
the AIS but of its fundamental properties and could be in part responsible for repeated
selection and conservation of the AIS during metazoan evolution. The capacity of the AIS
to improve the management of cooperative or parasitic symbiotic relationships at the indi-
vidual level could be a secondary development due to its progressive integration into the
innate immune system.This hypothesis constitutes a new scenario for AIS emergence and
explains the selection of MHC restriction and MHC diversification.

Keywords: adaptive immune system, immune repertoire, major histocompatibility complex, individual diversity,
convergent evolution, group selection

INTRODUCTION
The properties of the adaptive immune system (AIS) have always
fascinated immunologists. Through the random combination of
genes that breaks the central dogma of DNA conservation, the
AIS is theoretically able to generate a virtually unlimited num-
ber of antigenic receptors. This anticipatory repertoire allows for
(i) specific interaction with an infinite variety of microorgan-
isms, (ii) development of long-term protective specific memory,
and (iii) partial transfer of specific immune memory to the next
generation. Until recently, the AIS has been presented as the pin-
nacle of metazoan immune system evolution, a privilege of jawed
vertebrates. The AIS has traditionally been opposed to the phyloge-
netically conserved innate immune system (IIS), long considered
as an archaic and stereotyped mechanism to control infectious
microorganisms.

Development of the AIS is associated with significant energetic
costs (1, 2) and autoimmune risks (3), which thus require sizeable
fitness gains to justify its selection and conservation during evo-
lution. Paradoxically, despite knowledge on its organization that
has been accumulated for almost a century, the nature of those
supposed fitness gains are still far from clear.

THE “JAWED VERTEBRATE LIFESTYLE” HYPOTHESIS
Numerous authors have suggested that selective pressures lead-
ing to the emergence of the jawed vertebrate AIS are linked with
greater longevity (4), the acquisition of a jaw as a result of increased
physical injury in the digestive tract (5) or the necessity to protect
a limited number of offspring from infection-related losses (6).
However, all of these hypotheses, which are closely tied with the
jawed vertebrate lifestyle have lost pertinence since the publication
of studies demonstrating that functional and unrelated AIS-like
systems are also present in jawless vertebrates [Variable Lympho-
cyte Receptors (VLR)] (7) and arthropods such as Drosophila
[Down syndrome cell adhesion molecule (Dscam)] (8). Recently,
several other unrelated gene families have also emerged as strong
candidates responsible for the generation of an alternative AIS: the
fibrinogen-related proteins (FREPs) (9) of the gastropod Biom-
phalaria glabrata, the variable domain-containing chitin-binding
proteins (VCBPs) (10) of the amphioxus Branchiostoma floridae
and the Sp185/333 gene family found in sea urchin (11). Even if
the precise implications of these mechanisms in the host defense
against infection remain unclear, the growing body of data in
favor of the existence of AIS-like systems in jawless vertebrate
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Muraille Individual diversity and adaptive immune systems

and arthropods suggests that the paradigm of the AIS viewed as “a
privilege of jawed vertebrates” is dead.

The extraordinary convergent evolution toward a similar “AIS
solution”(i.e., anticipative and random generation of a large reper-
toire of antigenic receptors) in several phyla of metazoans seems
to exclude that historical contingencies have played a major role
in its selection. As phyla possessing an AIS display very different
anatomies, longevities, and lifestyles, the “AIS solution” seems to
constitute a response to fundamental selective pressures to which
the majority of higher metazoans are subjected. The main problem
is to identify these selective pressures.

THE “SUPERIOR PROTECTION AGAINST INFECTION”
HYPOTHESIS
As noted by Hedrick (12), the majority of hypotheses regarding
emergence of the AIS are built on the idea that the AIS necessarily
confers better individual protection against pathogens. However,
this presumption brings up three fundamental problems:

(1) From a theoretical evolutionary point of view, if hosts and par-
asites are engaged in an“arms race”[Red Queen race metaphor
of VanValen (13)], each new defense mechanism would induce
the selection of a new escape strategy. And indeed, numer-
ous pathogens are perfectly able to manipulate the modern
AIS to escape the immune response and persist in their host
throughout its life (14, 15). The high genomic plasticity of
virus and bacteria frequently allows them to rapidly escape
new immune defense mechanisms. The fact that AIS defi-
ciencies are frequently fatal in mice and humans is generally
cited to prove the importance of the AIS in individual pro-
tection (16). But this can also be explained by the fact that
infectious agents have co-evolved with hosts and consequently
progressively“calibrated”their virulence to the presence of the
AIS (12).

(2) Under natural conditions, all organisms are always infected
by pathogens, suggesting that health is not synonymous with
the “absence of infection” but results from the “good man-
agement of infection.” In some cases, tolerance can be more
economic and less damaging for the host compared with the
development of a sterilizing immune response (17).

(3) Infections have several positive consequences on the evolu-
tion/adaptation of organisms and their individual fitness. For
example, they allow for the circulation of genetic innova-
tion by horizontal gene transfer (HGT), help maintain genetic
diversity within a population and in some cases enhance host
resistance to infection [discussed in Ref. (18)], suggesting that
complete neutralization of infection by the immune system
can be unfavorable to long-term host adaptation.

In summary, there would be no “perfect definitive solution”
to control infection at the individual level as pathogens can
always neutralize a specific defense mechanism through their
higher rate of genetic variation. When infectious microorgan-
isms induce low damage level, tolerance can constitute a better
economic compromise as the immune response can be highly
damageable and chronic infections can have also some positive
consequences. Thus, we cannot formally exclude the “superior
protection against infection” hypothesis to explain selection and
stabilization of the AIS. However, as noted by numerous authors

(12, 19–21), it remains difficult to explain how the more spe-
cific immune response generated by the AIS improves the defense
of an individual against pathogens. In other terms, why was a
new complex system, based on a new strategy, required in some
metazoans? Why not just have continued to gradually adapt the
IIS based on germline-encoded receptors to contain infectious
microorganisms?

THE “MANAGEMENT OF MICROBIOTA” HYPOTHESIS
Based on the increasingly prevalent view that microbes are an
essential part of the metazoan phenotype and strongly influence
the fitness of their host, several authors (20–22) have proposed that
emergence of the AIS in vertebrates has been in part favored by an
improved ability to regulate the cooperative (mutualistic) micro-
bial flora (called microbiota). However, members of Cnidaria, the
most primitive phylum of metazoans, such as Hydra, already dis-
play a specific microbiota that is tightly regulated by their IIS
[reviewed in Ref. (23)]. This association with a specific, complex,
dynamic, and regulated microbiota appears to be a characteris-
tic shared by all metazoans, which suggests that microbiota have
constituted a major selective pressure that has driven evolution
of the IIS. However, though acquisition of the AIS provided for
more dynamic control of microbiota, direct selection of the pri-
mordial AIS mainly mediated by microbiota seems improbable.
Once again, what was the need for a completely different system
to perform a task previously attributed to the ISS? Why not just
continue to improve and adapt the IIS?

A NEW PERSPECTIVE ON SELECTION OF THE ADAPTIVE
IMMUNE SYSTEM: THE “GENERATOR OF INDIVIDUAL
DIVERSITY” HYPOTHESIS

“I stand upon my desk to remind myself that we must con-
stantly look at things in a different way,” John Keating from
Dead Poets Society.

Theories presented thus far to explain the emergence of the
AIS seem unconvincing, unsatisfactory or incomplete. Without
excluding these hypotheses, it is maybe time to explore AIS
emergence from a new perspective.

The modern mammal AIS could theoretically generate an enor-
mous diversity of antigenic receptors: for example, more than 1015

αβ T-cell receptors (TCR) (24) could be formed. It is well known to
all that this large adaptive immune repertoire produces a specific
immune response against all natural or artificial antigenic struc-
tures. However, even if this phenomenon has long been described
(25), it is frequently neglected that this response takes different
forms among individuals.

The real size of adaptive immune repertoire in an organism is
difficult to determine. However, it is clear that it is several orders of
magnitude smaller than 1018. For example, empirical analysis of T-
cell receptor β-chain diversity reveals approximately 106 different
clones in peripheral human blood (26, 27) and in the mouse spleen
(28). In human blood, TCR β-chains associate with at least 25 dif-
ferent α-chains, suggesting that αβ TCR diversity ranges from 107

to 108 (27). As each individual repertoire is randomly generated,
all members of a population display a unique “private” repertoire
of antigenic receptors (29, 30).
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In addition to mechanisms generating a random combination
of genes, it is now well documented that the natural adaptive
repertoire is also largely influenced by self-dominant antigens and
microbiota. Natural IgM and IgG autoantibodies are abundant
and ubiquitous in the serum of mice and humans (31). These
autoantibodies are generally polyreactive and can be protective
against some pathogens (32). Microbiota can shape the reper-
toire of peripheral lymphocytes (33) and also protect the host
through “competition- and immune-mediated colonization pro-
tection” (34). In turn, initial individual variations in the AIS can
affect reactivity to self-antigens and microbiota. Consequently,
each individual harbors a private repertoire of self-specific (35)
and microbiota-specific (33) antibodies.

When TCRβ sequences among individual mice of the same
inbred strain were analyzed, only 20–25% of the sequences were
shared (29). Thus, even if TCR specificity is degenerate (36), we
can postulate that the ability of the AIS to specifically recognize
and react to a pathogen varies at the individual level.

As a direct consequence of individual variability in the adap-
tive repertoire, the global immune response against pathogens can
be highly heterogeneous, even within a genetically homogeneous
population (37,38). The importance of the pre-immune repertoire
on the ability to control infection has been demonstrated in sev-
eral experimental models, such as in Leishmania major infection.
In this model, T-cell tolerance to a single antigen, the Leishma-
nia homolog of receptors for activated C kinase (LACK), is able
to drastically affect the choice of T-helper differentiation and the
outcome of infection (39). It is interesting to remark that the speci-
ficity of AIS memory can also contribute to reinforce phenotypic
diversity within populations. Each individual displays a particular
infectious and immune history. An individual’s immune history
can modify its reaction to infection, thus reinforcing random
repertoire-induced individual variability. Moreover, as AIS com-
ponents such as IgA are critically implicated in the composition
of microbiota (40), we cannot exclude that individual variability
of immune repertoires could also influence the composition of
microbiota and thus potentially affect all microbiota-dependent
functions such as resistance to infection (34), nutrition, metabo-
lism (41, 42), and even behavior (43, 44). Thus, we can conclude
that the AIS acts as a“generator of individual phenotypic diversity”
inside populations (Figure 1).

On the whole, the property of the AIS to generate individ-
ual diversity leads to the individualization of immune defenses
and implies that invasion and escape immune mechanisms devel-
oped by pathogens will certainly not always be successful as the
specific targets and organization of the immune response are
somewhat unpredictable/chaotic. In a population, where individ-
uals display heterogeneous immune responses toward infection,
the probability that a pathogen is able to infect all individu-
als could be reduced compared to a homogeneous population.
This increased frequency of resistant individuals can increase
the herd immunity threshold of that population (45) (i.e., the
obstacle formed by resistant individuals, which limits the dis-
semination of an infection and thus indirectly protects suscep-
tible individuals). Thus, individual resistance to infection could
be (indirectly) favored by the heterogeneity of the population
(Figure 1).

FIGURE 1 | Fitness gains at the individual and population level
generated by the AIS-induced private immune repertoire.

Interestingly, the heterogeneity of immune responses within a
population also favors the coexistence of both “naturally immune”
and “susceptible” individuals in that same population. The inter-
est of naturally resistant individuals is evident as they confer
robustness to infection at the population level. However, sus-
ceptible individuals, which allow for the persistence of pathogens
inside a population [termed “super-spreaders” (46), i.e., the small
number of individuals in any population that control most trans-
mission events] can also potentially provide several positive selec-
tive advantages associated with infection [i.e., gene circulation
by HGT, conservation of genetic diversity within the population
(18)]. In addition, when a partially immune colonized popula-
tion encounters an uncolonized population, the immune status of
experienced individuals constitutes a potent competitive weapon
against non-immune individuals (47–49). Finally, the persistence
of pathogens at low levels can also protect hosts by stimulating the
“Mackaness effect”(50), a form of immune-mediated colonization
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Muraille Individual diversity and adaptive immune systems

protection (34) and help to stimulate and maintain the protective
memory of resistant individuals.

We can interpret the random generation of diversity by the AIS
as a mechanism that favors task specialization of individuals and
thus a form of cooperation between individuals of a population.
Each individual displays a particular immune response toward
infection and thus each individual plays a different role (a con-
tinuum between resistant and susceptible) during epidemics. As
discussed above, both resistance and susceptibility can favor herd
immunity. The main constraint affecting all cooperative behav-
iors is their potential exploitation by selfish individuals (also called
cheaters) [Reviewed in Ref. (51)]. To generate durable fitness gains
for stabilization and dissemination within a population, coop-
erative mechanisms must be protected against cheaters. In the
case of the AIS, the risk of exploitation is neutralized by the ran-
dom nature of generation of the individual immune repertoire.
A selfish individual cannot choose to express the adapted reper-
toire (associated with resistance to infection) and ameliorate its
fitness because the selected genetic process does not allow this
choice. More importantly, it is also impossible for an individual
to anticipatively know which repertoire is adapted or unadapted.
AIS-dependent individual fitness gains seem to be conferred by
a “lottery-like assignment,” a classical strategy to protect cooper-
ative systems from exploitation by selfish individuals that is well
described in social unicellular organisms such as Dictyostelium
discoideum (51). I hypothesize that the random nature of the
mechanisms shared by all AIS to generate individual phenotype
diversity has been selected during evolution in part because of its
resistance to cheating.

HYPOTHETICAL SCENARIO OF AIS EMERGENCE SATISFYING
THE OCCAM’S RAZOR PRINCIPLE
The “Big Bang” vision (52) of emergence of the AIS postulates
that the primordial AIS developed as a solution to improve indi-
vidual survival. This vision leads to a paradox. It is very difficult
to imagine the gradual building of the AIS in a Red Queen arms
race dynamic because genes implicated in the modern AIS are
strongly interdependent. To confer an advantage on the host and
be selected, the AIS must appear as an organized set of interacting
genes, and this constitutes a highly improbable stochastic event.
In contrast, the “generator of individual diversity” hypothesis fol-
lows the principle of parsimony (Occam’s razor) and allows us to
imagine the gradual building of the AIS without improbable big
bang-like emergence.

To generate individual phenotypic variation inside popula-
tions and be selectable, the primordial AIS may have initially
appeared as a “simple” mechanism generating random diversity
in the expression levels or splicing of pattern recognition recep-
tors (PRRs) or even basic receptors mediating pathogen invasion.
The immunoglobulin superfamily (IgSF), which includes antigen
receptors and MHC molecules, is a large group of soluble cell
surface proteins. IgSF are involved in a variety of cellular activi-
ties, including tissue organization and immune responses. Many
pathogens have exploited cell surface IgSF proteins to mediate cell
host attachment (53, 54). An individual variation in the expres-
sion of these receptors may have immediate positive effects that are
selectable at the population level. In agreement with this scenario,

recombination activating genes (RAGs) have been detected in
Echinoderms (55), suggesting that RAGs were present in verte-
brate genomes long time before the appearance of modern antigen
receptors. We can hypothesize that RAGs primarily induced simple
individual variability in the expression of IgSF proteins implicated
in host infection by some pathogens. This mechanism could lead
to enhanced heterogeneity of populations composed of individual
expressing functional RAGs bound to IgSF proteins. This het-
erogeneity may have improved the survival of these populations
during competition with infectious organisms and populations
displaying lower heterogeneity. Then, duplication of IgSF genes
may have been selected because it led to a progressive increase
in individual phenotypic diversity. Subsequently, this core mech-
anism could have gradually associated and integrated with the IIS
to better manage infection and microbiota, like in the modern AIS.

SELECTION OF MHC RESTRICTION
In mammals, antigen receptors on B-cells and γδT-cells recognize
conformational epitopes on native antigenic proteins and glycol-
ipids. In contrast, lymphocytes expressing αβTCR only recognize
linear peptide fragments associated with the major histocompat-
ibility (MHC) receptors. Some MHC genes are the most variable
functional genes in the vertebrate genome and among the most
studied regions in the human genomes. It is generally proposed
that the primary function of the MHC is “to allow the immune
system to identify infectious pathogens and eliminate them” (56).
However, the selection during evolution of “MHC restriction” that
results in a hole in the immune repertoire is difficult to explain
from an individual selection perspective because susceptibility to
infectious disease (57, 58) and a great number of immunologi-
cal pathologies, such as hypersensibility (59) and autoimmunity
(60), are linked to the MHC haplotype. In contrast, if the random
constitution of a large antigenic receptor repertoire was initially
selected for its property to favor individual phenotypic diversity,
we can interpret the selection of MHC restriction for αβTCR dur-
ing evolution and the later intense diversification of the MHC
gene family. Functionally, MHC receptors form a filter influenc-
ing antigen perception by αβTCR and thus strongly shape the
individual αβTCR repertoire during thymic selection. The high
allelic polymorphism of MHC genes among populations further
reinforces the wide variety of pre-immune individual repertoires
and guarantees great phenotypic diversity at the population level.
In keeping with this observation, analyses of the constant region
have shown that γδTCR sequences are older (61) than αβTCR
and B-cell receptors. This suggests that the ancestral “primordial”
immune lymphoid cell was like a modern γδT-cell performing
direct antigen recognition and that secretion of antigenic recep-
tors or MHC restriction are derived characteristics. In accord, a
recent report (62) confirmed experimentally that MHC restric-
tion is the result of thymic selection and not an intrinsic feature
of αβTCR structure. Interestingly, the possible additional role of
the MHC in social recognition and mating choice in mammals to
maintain genetic diversity (63) fits perfectly with this hypothesis.

CONCLUSION
There is much evidence from ecological studies demonstrating that
the ability of populations to adapt, maintain their productivity,
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and survive to infection is favored by the individual diversity of
the components of those populations, in part through task spe-
cialization and synergic interactions between individuals (64–67).
The analysis of artificial networks and living systems has formally
demonstrated that a system must be robust against environmental
perturbations in order to evolve and that robustness grows with the
diversity of the components of the system (68). Since the variety of
environmental perturbations can potentially be unlimited, natural
selection should logically try to maximize the internal phenotypic
diversity of populations.

The existence of individual phenotype diversification mecha-
nisms is well documented for pathogens. Numerous pathogens
escape the immune response by their ability to quickly diversify
and evolve in the host. For example, the high error rates of repli-
cation in RNA viruses, such as HIV and the hepatitis C virus,
cause virus populations to form mutant clouds (also termed qua-
sispecies). It has been long thought that growth competition only
occurs between different variants and that the fittest clones pre-
dominate under given conditions. However, recent studies have
provided evidence that complex cooperative and interfering inter-
actions also take place within mutant clouds (69, 70). Similarly,
bacterial persistence in a host is frequently associated with coop-
erative processed leading to biofilm formation. Biofilm impairs
some immune effector mechanisms (71) and can constitute a hot
spot of gene exchange (72). Like for the virus cloud, resistance to
immune selective pressures in the biofilm is favored by cooperation
between individuals and random genetic diversification.

The extreme variability between individual repertoires of adap-
tive immune receptors is well known from Oudin’s seminal work
on idiotypy in the rabbit in 1969 (25). However, while individual
variability is considered by geneticists, ecologists, and microbiol-
ogists as a fundamental requirement to adapt and resist to fluc-
tuating and unpredictable selective pressures, most experimental
immunologists still seem to consider variation of the individual
immune response only as a by-product of the AIS maturation
process and as disturbing noise in experiments. Experimental
immunologists have mainly focused their work on elucidation of
the molecular mechanisms implicated in the building of adaptive
immune repertoires and have very rarely investigated the pos-
sibility that individual variability in and of itself may confer a
fitness gain.

I propose that evolution could have selected individual phe-
notype diversification mechanisms in metazoans to better resist
to epidemic threats, which constitute a pre-dominant selective
pressure (73). Programed random genetic variations in somatic
cells implicated in the AIS influence the ability of the immune
system to control pathogens. This generates a large heterogeneity
of individual phenotypes within a population without affecting
the germline cells. I propose that this phenotypic heterogene-
ity allows for a large range of unpredictable answers to biotic
environmental challenges and consequently results in enhanced
robustness of the population. Thus, like sexuality that was pre-
sumably selected to favor gene mixing, the repeated emergence,
and conservation of an AIS among metazoans can constitute one
of the answers to the absolute necessity to maintain and generate
phenotypic individual diversity in populations. Consequently, I
hypothesize that the ability to induce random variation in the

individual immune response may have constituted an important
fitness gain contributing to selection and stabilization of the pri-
mordial AIS. Of course, the modern mammal AIS is clearly a
highly complex multitasking system. My hypothesis concerning
the fitness gains resulting from the generation of individual diver-
sity does not exclude that other benefits, such as optimization
of the management of infection and microbiota, may have also
contributed to AIS selection.

I hope that my hypothesis can lead immunologists and ecol-
ogists to explore the importance of AIS-generated individual
immune system diversity and collect data to confirm or invalidate
this prediction.

THEORETICAL PREDICTIONS
A theoretical scientific framework must satisfy Popperian’s
refutability criteria by presenting testable predictions. In the field
of evolutionary biology, this task is particularly difficult. Natural
evolutionary processes appear extremely complex because they
depend on many variables and, under laboratory conditions; they
are generally difficult or impossible to reproduce. In this article,
I have tried to explore the possibility that the ability of the AIS
to generate individual diversity within a population constitutes
one cause for its repeated selection during evolution. I conclude
that individual diversity induced by the modern AIS could confer
important selective advantages for individual and population sur-
vival. These advantages imply that the generation of diversity may
not be a by-product of the modern AIS but of its fundamental
properties. This suggests that gains resulting from the generation
of diversity could be partially responsible for the repeated selec-
tion and conservation of the primordial AIS during metazoan
evolution. I propose two testable predictions of the importance
of AIS-induced anticipated phenotypic diversification to improve
fitness and survival:

THE METAZOAN AIS MUST BE BASED ON ANTICIPATIVE AND RANDOM
GENERATION OF THE ANTIGEN RECEPTOR REPERTOIRE TO BE
SELECTED DURING EVOLUTION
The adaptive immune response to pathogens does not necessarily
require the anticipative random generation of a large repertoire of
antigen receptors. The CRISPR/CAS system expressed by some
bacteria also allows for an adaptive immune response, mem-
ory, and transfer of protection to descendants (74). This “quasi
Lamarckian” system demonstrates that an alternative mechanical
solution exists to generate an AIS. Why all are described metazoan
AIS based on anticipatory random generation of a large repertoire
of antigen receptors? This solution is costly (1) and a potential
source of autoimmunity (3). Based on my hypothesis, this solution
generates stable individual phenotypic diversity within popula-
tions, which offers some important advantages such as (i) intro-
duction of unpredictability of the individual immune response,
thus neutralizing the immune escape strategy of pathogens, (ii)
improvement of herd immunity by favoring task specialization
and cooperation among populations, (iii) protection of AIS-
generated cooperation against cheating by cheaters. Discovery and
characterization of new forms of the AIS among metazoans could
confirm or invalidate this prediction of the constraints that govern
the metazoan AIS organization.
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REDUCTION OF MHC DIVERSITY IN A POPULATION MUST NEGATIVELY
AFFECT RESISTANCE TO EPIDEMIA THREATS
If the metazoan AIS has been selected in part for its ability to
generate individual diversity inside a given population and if this
property has been conserved in the modern AIS, the uniformiza-
tion of individual immune responses should reduce the global
resistance of populations to epidemics. The impact of the reduc-
tion of global genetic diversity inside a group on resistance to
infection has been documented in nature (75). Unfortunately, the
specific contribution of AIS-induced diversity to this susceptibil-
ity is rarely investigated. As discussed previously, the combination
of MHC receptors expressed by individuals strongly shapes the
T-cell repertoire and the high polymorphism of the MHC locus
in populations contributes to the heterogeneity of the individ-
ual immune repertoire. Thus, the variety of pre-immune indi-
vidual repertoires can be a direct function of the diversity of
MHC genes among populations. And the diversity of MHC genes
can be a function of the prevalence of infection in a popula-
tion. As a result, a reduction of MHC diversity in individuals
or a population should reduce the diversity of the individual
immune repertoire in the population and thus the resistance of
that population to infection. In agreement, some studies [reviewed
in Ref. (56, 58)] document the preservation of MHC diversity
in populations by infectious diseases. MHC heterozygosity has
enhanced the resistance of individuals to infection (76, 77). Cer-
tain species with reduced MHC diversity, such as the cotton-top
tamarin, are more susceptible to viral infection (Piekarczyk MS
JI 1997) or, like Tasmanian devils, display frequent population
crashes (78).
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